4.5 Article

Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 76, Issue 5, Pages 1565-1572

Publisher

WILEY
DOI: 10.1046/j.1471-4159.2001.00181.x

Keywords

dopamine phenotype; dopamine transporter; gene; human; nurr1; transcription regulation

Funding

  1. NIDA NIH HHS [DA06470] Funding Source: Medline
  2. NIDDK NIH HHS [DK46339] Funding Source: Medline
  3. NIMH NIH HHS [MH47181] Funding Source: Medline

Ask authors/readers for more resources

The importance of the nuclear receptor nurr1 for the appropriate development of mesencephalic dopamine-synthesizing neurons has been clearly demonstrated through the targeted disruption of the nurr1 gene. The persistence of nurr1 expression in adult tissue suggests a possible role for this transcription factor in the maintenance, as well as development, of the dopaminergic phenotype. To address this issue, we analyzed the effects of nurr1 on the transcriptional expression of the human dopamine transporter gene (hDAT), one of the most specific phenotypic markers for dopaminergic neurons. Nurr1 enhanced the transcriptional activity of hDAT gene constructs transiently transfected into a newly described cell line (SN4741) that expresses a dopaminergic phenotype, whereas other members of the NGFI-B subfamily of nuclear receptors had lesser or no effects. Nurr1 activation of hDAT was not dependent upon heterodimerization with the retinoid X receptor. Unexpectedly, functional analysis of a series of gene constructs revealed that a region of the hDAT 5'-flanking sequence devoid of NGFI-B response element (NBRE)-like sites mediated nurr1 activation. Additional experiments using a nurr1 mutant construct suggest that nurr1 activates hDAT transcription via a novel NBRE-independent mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available