4.4 Article

Chaos and population disappearances in simple ecological models

Journal

JOURNAL OF MATHEMATICAL BIOLOGY
Volume 42, Issue 3, Pages 239-260

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s002850000070

Keywords

population dynamics; extinction; population disappearance; unimodal maps; chaos; bifurcations

Ask authors/readers for more resources

A class of truncated unimodal discrete-time single species models for which low or high densities result in extinction in the following generation are considered. A classification of the dynamics of these maps into five types is proven: (i) extinction in finite time for all initial densities, (ii) semistability in which all orbits tend toward the origin or a semistable fixed point, (iii) bistability for which the origin and an interval bounded away from the origin are attracting, (iv) chaotic semistability in which there is an interval of chaotic dynamics whose compliment lies in the origin's basin of attraction and (v) essential extinction in which almost every (but not every) initial population density leads to extinction in finite time. Applying these results to the Logistic, Ricker and generalized Beverton-Holt maps with constant harvesting rates, two birfurcations are shown to lead to sudden population disappearances: a saddle node bifurcation corresponding to a transition from bistability to extinction and a chaotic blue sky catastrophe corresponding to a transition from bistability to essential extinction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available