4.8 Article

TRPC1 and TRPC5 form a novel cation channel in mammalian brain

Journal

NEURON
Volume 29, Issue 3, Pages 645-655

Publisher

CELL PRESS
DOI: 10.1016/S0896-6273(01)00240-9

Keywords

-

Categories

Ask authors/readers for more resources

TRP proteins are cation channels responding to receptor-dependent activation of phospholipase C. Mammalian (TRPC) channels can form hetero-oligomeric channels in vitro, but native TRPC channel complexes have not been identified to date. We demonstrate here that TRPC1 and TRPC5 are subunits of a heteromeric neuronal channel. Both TRPC proteins have overlapping distributions in the hippocampus. Coexpression of TRPC1 and TRPC5 in HEK293 cells resulted in a novel nonselective cation channel with a voltage dependence similar to NMDA receptor channels, but unlike that of any reported TRPC channel. TRPC1/TRPC5 heteromers were activated by G(q)-coupled receptors but not by depletion of intracellular Ca2+ stores. In contrast to the more common view of the TRP family as comprising store-operated channels, we propose that many TRPC heteromers form diverse receptor-regulated nonselective cation channels in the mammalian brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available