4.7 Article

Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior

Journal

CHAOS
Volume 11, Issue 1, Pages 170-179

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1350439

Keywords

-

Ask authors/readers for more resources

A biological introduction serves to remind us that differentiation is an epigenetic process, that multistationarity can account for epigenetic differences, including those involved in cell differentiation, and that positive feedback circuits are a necessary condition for multistationarity and, by inference, for differentiation. The core of the paper is comprised of a formal description of feedback circuits and unions of disjoint circuits. We introduce the concepts of full-circuit (a circuit or union of disjoint circuits which involves all the variables of the system), and of ambiguous circuit (a circuit whose sign depends on the location in phase space). We describe the partition of phase space (a) according to the signs of the ambiguous circuits, and (b) according to the signs of the eigenvalues or their real part. We introduce a normalization of the system versus one of the circuits; in two variables, this permits an entirely general description in terms of a common diagram in the circuit space. The paper ends with general statements concerning the requirements for multistationarity, stable periodicity, and deterministic chaos. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available