4.5 Article

From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments?

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1817, Issue 5, Pages 711-717

Publisher

ELSEVIER
DOI: 10.1016/j.bbabio.2012.02.030

Keywords

Photosynthesis; Light-harvesting complex; Ihca4; Non-photochemical quenching; Charge-transfer state; Tuning of spectroscopic properties

Funding

  1. De Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Earth and Life Sciences (ALW)

Ask authors/readers for more resources

The first event of photosynthesis is the harvesting of solar energy by a large array of pigments. These pigments are coordinated to proteins that organize them to assure efficient excitation energy transfer. The protein plays an essential role in tuning the spectroscopic properties of the pigments, by determining their site energy and/or by favoring pigment-pigments interactions. Here we investigate how the protein modulates the pigment properties by using a single-point-mutation approach. We monitor changes in the low-energy absorption/emission band of Lhca4, which is well separated from the bulk absorption and thus represents an attractive model system. Moreover, it was recently shown that Lhca4 exists in at least two conformations, a dominating one emitting at 720 nm and a second one emitting at 685 nm (Kruger et al. PNAS 2011). Here we show that a single amino-acid substitution (from Asn to Gln, which are both chlorophyll-binding residues and only differ for one C-C bond), moves the equilibrium almost completely towards the 685-nm conformation. This indicates that small changes in the protein can have a large effect on the properties of the pigments. We show that His99, which was suggested to coordinate a red-absorbing chlorophyll (Melkozemov and Blankenship, JBC 2003), is not a chlorophyll ligand. We also show that single amino-acid substitutions nearby the chlorophylls allow to tune the emission spectrum of the pigments over a wide range of wavelengths and to modulate the excited-state lifetimes of the complex. These findings are discussed in the light of previously proposed non-photochemical quenching models. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available