4.3 Article

Late-Holocene (post-4000 years BP) coastal dune development in Northumberland, northeast England

Journal

HOLOCENE
Volume 11, Issue 2, Pages 215-229

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1191/095968301667179797

Keywords

coastal sand dunes; radiocarbon dating; IRSL dating; relative sea-level change; climatic change; 'Little Ice Age'; late Holocene; Northumberland

Ask authors/readers for more resources

The recent environmental history of coastal dune systems in Northumberland, northeast England, has been examined using geomorphological, stratigraphical and sedimentological techniques linked to radiocarbon and infrared-stimulated luminescence (IRSL) dating. Stratigraphies were determined from 22 vibracores and three sections, and dune chronology was based on 28 C-14 dates, from pear and soil organic horizons, and 26 IRSL dates on K-feldspar grains from within sand layers. Almost all dune systems are associated with regressive shorelines consequent upon a fall in relative sea level (RSL) from its Holocene peak, and indicate RSL functioned as a macroscale control on dune development. Where dunes are anchored on terrestrial sediment, dune expansion may have been either transgressive or regressive in nature. Where near-shore marine sediments form the dune substrate, a regressive (prograding) dune model seems most likely. Most dune building occurred during the 'Little Ice Age' (LIA), probably in association with specific climatic and morphosedimentary conditions, principally periods of easterly circulation, a greater frequency of severe North Sea storms, RSL fall, and sediment and accommodation space availability. Dune development in Holocene cool intervals earlier than the LIA was of limited spatial extent, suggesting some differences in prevailing conditions at those times.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available