4.8 Article

Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure

Journal

CELL RESEARCH
Volume 11, Issue 1, Pages 37-43

Publisher

SCIENCE PRESS
DOI: 10.1038/sj.cr.7290064

Keywords

H2O2 pH; SNARF-1-AM; confocal; Vicia guard cell

Categories

Ask authors/readers for more resources

Epidermal bioassay demonstrated that benzylamine, a membrane-permeable weak base, can mimick hydrogen peroxide (H2O2) to induce stomatal closure, and butyric acid, a membrane-permeable weak acid, can partly abolish the H2O2-induced stomatal closure. Confocal pH mapping with the probe 5-(and-6)carboxy seminaphthorhodafluor-1-acetoxymethyleste (SNARF-1-AM) revealed that H2O2 leads to rapid changes in cytoplasmic and vacuolar pH in guard cells of Vicia faba L, i. e. alkalinization of cytoplasmic areas occur red in parallel with a decrease of the vacuolar pH, and that butyric acid pretreatment can abolish alkalinization of cytoplasmic areas and acidification of vacuolar areas of guard cells challenged with H2O2. These results imply that the alkalinization of cytoplasm via efflux of cytosol protons into the vacuole in guard cells challenged with H2O2 is important at an early stage in the signal cascade leading to stomatal closure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available