4.5 Article

Alternative photosynthetic electron flow to oxygen in marine Synechococcus

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1777, Issue 3, Pages 269-276

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbabio.2008.01.002

Keywords

cyanobacteria; photosystem; oxidase; iron; oxygen; electron transport; alternative electron transport; synechococcus WH80102

Ask authors/readers for more resources

Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b(6)f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O-2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available