4.7 Article

Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells

Journal

JOURNAL OF CELL BIOLOGY
Volume 152, Issue 5, Pages 867-876

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.152.5.867

Keywords

phosphatidylinositol 4,5 bisphosphate; Rho; Rho-dependent serine/threonine kinase; gelsolin; phosphatidylinositol phosphate 5-kinase

Categories

Funding

  1. NHLBI NIH HHS [HL51323] Funding Source: Medline
  2. NIGMS NIH HHS [GM51112, GM61203] Funding Source: Medline

Ask authors/readers for more resources

Phosphatidylinositol 4,5 bisphosphate (PIP2) is widely implicated in cytoskeleton regulation. but the mechanisms by which PIP2 effect cytoskeletal changes are not defined. We used recombinant adenovirus to in feet CV1 cells with the mouse type I phosphatidylinositol phosphate 5-kinase alpha (PTPSKI), and identified the players that modulate the cytoskeleton in response to PIP2 signaling. PIP5KI overexpression increased PIP2 and reduced phosphatidylinositol 4 phosphate (PI4P) levels. It promoted robust stress-fiber formation in CVI cells and blocked PDGF-induced membrane ruffling and nucleated actin assembly. Y-27632, a Rho-dependent serine/threonine protein kinase (ROCK) inhibitor. blocked stress-fiber formation and inhibited PIP2 and PI4P synthesis in cells. However, Y-27632 had no effect on PIP2 synthesis in lysates, although it inhibited PI4P synthesis. Thus, ROCK may regulate PIP2 synthesis by controlling PI4P availability. PIP5KI overexpression decreased gelsolin, profilin. and capping protein binding to actin and increased that of ezrin. These changes can potentially account for the increased stress fiber and nonruffling phenotype. Our results establish the physiological role of PIP2 in cytoskeletal regulation, clarify the relation between Rho, ROCK, and PIP2 in the activation of stress-fiber formation, and identify the key players that modulate the actin cytoskeleton in response to PIP2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available