4.6 Article

Strong coupling of exciton and photon modes in photonic crystal infiltrated with organic-inorganic layered perovskite

Journal

APPLIED PHYSICS LETTERS
Volume 78, Issue 10, Pages 1328-1330

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1352048

Keywords

-

Ask authors/readers for more resources

Large vacuum Rabi-splitting, the evidence of strong coupling of photon and exciton modes, was observed at room temperature in an ordered array of silica microspheres infiltrated with organic-inorganic layered perovskite. By natural sedimentation of a colloidal suspension of monodispersed silica microspheres with a diameter of 256 nm, three-dimensional ordered array of silica microspheres (silica opal) were prepared. Into an air space of the silica opal, organic-inorganic perovskite, bis-(phenethylammonium) tetraiodoplumbate (PAPI), which exhibits intense exciton absorption at 2.40 eV, was infiltrated. The silica opal infiltrated with PAPI (23% of air space was filled) exhibited a stop band at 2.13 eV, when observed at a normal direction to the sample surface. By changing the observation angle, the coupling of the stop band at around 2.1-2.4 eV and the exciton band at 2.40 eV due to PAPI was attained. From angle-tuning measurements of reflection spectra, a vacuum Rabi-splitting of 240 meV was evaluated. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available