4.2 Article

Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.)

Journal

BIOCHEMISTRY-MOSCOW
Volume 78, Issue 8, Pages 909-914

Publisher

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1134/S0006297913080075

Keywords

insects; bumblebee; flight muscle; mitochondria; oxidative substrates; oxidative phosphorylation

Funding

  1. Ministry of Science of the Russian Federation [14.B37.21.1229]
  2. Russian Foundation for Basic Research [11-04-00498-a]

Ask authors/readers for more resources

This report describes the isolation procedure and properties of tightly coupled flight muscle mitochondria of the bumblebee Bombus terrestris (L.). The highest respiratory control index was observed upon oxidation of pyruvate, whereas the highest respiration rates were registered upon oxidation of a combination of the following substrates: pyruvate + malate, pyruvate + proline, or pyruvate + glutamate. The respiration rates upon oxidation of malate, glutamate, glutamate + malate, or succinate were very low. At variance with flight muscle mitochondria of a number of other insects reported earlier, B. terrestris mitochondria did not show high rates of respiration supported by oxidation of proline. The maximal respiration rates were observed upon oxidation of alpha-glycerophosphate. Bumblebee mitochondria are capable of maintaining high membrane potential in the absence of added respiratory substrates, which was completely dissipated by the addition of rotenone, suggesting high amount of intramitochondrial NAD-linked oxidative substrates. Pyruvate and alpha-glycerophosphate appear to be the optimal oxidative substrates for maintaining the high rates of oxidative metabolism of the bumblebee mitochondria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available