4.6 Review

Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation

Journal

EXPERIMENTAL CELL RESEARCH
Volume 264, Issue 1, Pages 169-184

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/excr.2000.5133

Keywords

tumor; carcinoma; breast; paracrine; epithelial; fibroblast; myofibroblast; stroma; desmoplasia

Funding

  1. NCI NIH HHS [5 P01 CA80111] Funding Source: Medline

Ask authors/readers for more resources

Tumors arise from cells that have sustained genetic mutations resulting in deregulation of several of their normal growth-controlling mechanisms. Much of the research concerning the origins of cancer has focused on the genetic mutations within tumor cells, treating tumorigenesis as a cell-autonomous process governed by the genes carried by the tumor cells themselves. However, it is increasingly apparent that the stromal microenvironment in which the tumor cells develop profoundly influences many steps of tumor progression. In various experimental tumor models, the microenvironment affects the efficiency of tumor formation, the rate of tumor growth, the extent of invasiveness, and the ability of tumor cells to metastasize. In carcinomas, the influences of the microenvironment are mediated, in large part, by paracrine signaling between epithelial tumor cells and neighboring stromal fibroblasts, In this review, we summarize recent advances in understanding the paracrine signaling interactions between epithelial cancer cells and associated fibroblasts and examine the effects of these bidirectional interactions on various aspects of carcinoma formation. We note, however, that paracrine signaling between other cell types within the carcinomas, such as endothelial cells and inflammatory cells, may play equally important roles in tumor formation and we will refer to these heterotypic interactions where relevant. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available