4.6 Article

The transcription factors NF-κB and AP-1 are differentially regulated in skeletal muscle during sepsis

Journal

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
Volume 281, Issue 5, Pages 1331-1336

Publisher

ACADEMIC PRESS INC
DOI: 10.1006/bbrc.2001.4497

Keywords

sepsis; muscle; cachexia; proteolysis; transcription factors; NF-kappa B; AP-1; glucocorticoids; RU38486

Funding

  1. NIDDK NIH HHS [R01 DK 37908] Funding Source: Medline
  2. NIGMS NIH HHS [IT32GM08478] Funding Source: Medline

Ask authors/readers for more resources

Sepsis is associated with increased muscle proteolysis and upregulated transcription of several genes in the ubiquitin proteasome proteolytic pathway. Glucocorticoids are the most important mediator of sepsis-induced muscle cachexia. Here, we examined the influence of sepsis in rats on the transcription factors NF-kappaB and AP-1 in skeletal muscle and the potential role of glucocorticoids in the regulation of these transcription factors. Sepsis was induced by cecal ligation and puncture (CLP). Control rats were sham-operated. NF-kappaB and AP-1 DNA binding activity was determined by electrophoretic mobility shift assay (EMSA) in extensor digitorum longus muscles at different time points up to 16 h after sham-operation or CLP, Sepsis resulted in an early (4 h) upregulation of NF-kappaB activity followed by inhibited NF-kappaB activity at 16 h. AP-1 binding activity was increased at all time points studied during the septic course. When rats were treated with the glucocorticoid receptor antagonist RU38486, NF-kappaB activity increased, whereas AP-1 activity was not influenced by RU38486. The results suggest that NF-kappaB and AP-1 are differentially regulated in skeletal muscle during sepsis and that glucocorticoids may regulate some but not all transcription factors in septic muscle. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available