4.6 Article

Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour

Journal

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
Volume 500, Issue 1-2, Pages 121-133

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0022-0728(00)00423-X

Keywords

electrochemical capacitor; porous electrode; double layer capacitance

Ask authors/readers for more resources

Electrochemical supercapacitors provide electrical energy storage systems complementary to batteries. Based on the double layer capacitance of high area porous electrode materials, e.g. carbon powders, felts, foams, aerogels or on the redox pseudocapacitance of oxide or polymer films, specific capacitances of the order of 50 similar to 100 F g(-1) are realizable. However, the porous nature of the electrode structures introduces a distribution of resistive and capacitative elements giving rise to electrical behaviour like that of a transmission line, as treated by de Levie, with a resulting complex power spectrum depending on charging or discharging rates. The present paper examines the cyclic voltammetry behaviour of de Levie type wire brush electrodes as models for porous electrodes, in comparison with that of single wire electrodes of the same metal. Comparisons are also made with constant current charging behaviour and with the electrochemical behaviour of specially made, 3 V, non aqueous solution, double layer capacitor modules, examined under similar conditions in relation to the current response profiles of a 5 RC element hardware model circuit. These approaches enable the effects of the distribution of R and C elements on charge acceptance and delivery at various rates to be quantitatively evaluated for various resistivities of the conducting electrolyte in pores. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available