4.6 Article

Natural ceramide reverses Fas resistance of acid sphingomyelinase-/- hepatocytes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 11, Pages 8297-8305

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M008732200

Keywords

-

Funding

  1. NCI NIH HHS [CA61524, CA72632, CA52462, CA42385] Funding Source: Medline

Ask authors/readers for more resources

The role of the second messenger ceramide in Fas-mediated death requires clarification. To address this issue, we generated hepatocytes from paired acid sphingomyelinase (ASMase; asmase)(+/+) and asmase(-/-) mice. asmase(-/-) hepatocytes, derived from 8-week old mice, manifested normal sphingomyelin content and normal morphological, biochemical, and biologic features. Nonetheless, ASMase-deficient hepatocytes did not display rapid ceramide elevation or apoptosis in response to Jo2 anti-Fas antibody. asmase(-/-) hepatocytes were not inherently resistant to apoptosis because staurosporine, which did not induce early ceramide elevation, stimulated a normal apoptotic response. The addition of low nanomolar quantities of natural C-16-ceramide, which by itself did not induce apoptosis, completely restored the apoptotic response to anti-Fas in asmase(-/-) hepatocytes. Other sphingolipids did not replace natural ceramide and restore Fas sensitivity. Overcoming resistance to Fas in asmase(-/-) hepatocytes by natural ceramide is evidence that it is the lack of ceramide and not ASMase which determines the apoptotic phenotype. The ability of natural ceramide to rescue the phenotype without reversing the genotype provides evidence that ceramide is obligate for Fas induction of apoptosis in hepatocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available