4.6 Article

The molecular mechanism for the genetic disorder familial defective apolipoprotein B100

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 12, Pages 9214-9218

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M008890200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL-47660] Funding Source: Medline

Ask authors/readers for more resources

Familial defective apolipoprotein B100 (FDB) is a genetic disorder in which low density lipoproteins (LDL) bind defectively to the LDL receptor, resulting in hypercholesterolemia and premature atherosclerosis. FDB is caused by a mutation (R3500Q) that changes the conformation of apolipoprotein (apo) B100 near the receptor-binding site. Pie previously showed that arginine, not simply a positive charge, at residue 3500 is essential for normal receptor binding and that the carboxyl terminus of apoB100 is necessary for mutations affecting arginine 3500 to disrupt LDL receptor binding. Thus, normal receptor binding involves an interaction between arginine 3500 and tryptophan 4369 in the carboxyl tail of apoB100. W4369Y LDL and R3500Q LDL isolated from transgenic mice had identically defective LDL binding and a higher affinity for the monoclonal antibody MB47, which has an epitope flanking residue 3500. We conclude that arginine 3500 interacts with tryptophan 4369 and facilitates the conformation of apoB100 required for normal receptor binding of LDL. From our findings, we developed a model that explains how the carboxyl terminus of apoB100 interacts with the backbone of apoB100 that enwraps the LDL particle. Our model also explains how all known ligand-defective mutations in apoB100, including a newly discovered R3480W mutation in apoB100, cause defective receptor binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available