4.3 Article

The regulation of the cardiac potassium channel (HERG) by caveolin-1

Journal

BIOCHEMISTRY AND CELL BIOLOGY
Volume 86, Issue 5, Pages 405-415

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/O08-118

Keywords

HERG; caveolin-1; lipid rafts; potassium channel; protein-protein interaction

Funding

  1. National Natural Science Foundation of China [30600254]
  2. Natural Science Foundation of Guangdong Province, China [06301076]
  3. China Postdoctoral Science Foundation [20060400211]

Ask authors/readers for more resources

Protein-protein interaction plays a key role in the regulation of biological processes. The human potassium (HERG) channel is encoded by the ether-a-go-go-related gene (herg), and its activity may be regulated by association with other cellular proteins. To identify cellular proteins that might play a role in the regulation of the HERG channel, we screened a human heart cDNA library with the N terminus of HERG using a yeast 2-hybrid system, and identified caveolin-1 as a potential HERG partner. The interaction between these 2 proteins was confirmed by coimmunoprecipitation assay, and their overlapping subcellular localization was demonstrated by fluorescence immunocytochemistry. The physiologic implication of the protein-protein interaction was studied in whole-cell patch-clamp electrophysiology experiments. A significant increase in HERG Current amplitude and a faster deactivation of tail current were observed in HEK293/HERG cells in a membrane lipid rafts disruption model and caveolin-1 knocked down cells by RNA interference. Alternatively, when caveolin-1 was overexpressed, the HERG current amplitude was significantly reduced and the tail current was deactivated more slowly. Taken together, these data indicate that HERG channels interact with caveolin-1 and are negatively regulated by this interaction. The finding from this study clearly demonstrates the regulatory role of caveolin-1 on HERG channels, and may help to understand biochemical events leading to arrhythmogenesis in the long QT syndrome in cardiac patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available