4.4 Article

Mechanisms of Inhibition of Rhizobium etli Pyruvate Carboxylase by L-Aspartate

Journal

BIOCHEMISTRY
Volume 53, Issue 45, Pages 7100-7106

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi501113u

Keywords

-

Funding

  1. National Institutes of Health [GM070455]
  2. Thailand Research Fund [BRG5480002, PHD/0308/2551]

Ask authors/readers for more resources

L-Aspartate is a regulatory feedback inhibitor of the biotin-dependent enzyme pyruvate carboxylase in response to increased levels of tricarboxylic acid cycle intermediates. Detailed studies of L-aspartate inhibition of pyruvate carboxylase have been mainly confined to eukaryotic microbial enzymes, and aspects of its mode of action remain unclear. Here we examine its inhibition of the bacterial enzyme Rhizobium etli pyruvate carboxylase. Kinetic studies demonstrated that L-aspartate binds to the enzyme cooperatively and inhibits the enzyme competitively with respect to acetyl-CoA. L-Aspartate also inhibits activation of the enzyme by MgTNP-ATP. The action of L-aspartate was not confined to inhibition of acetyl-CoA binding, because the acetyl-CoA-independent activity of the enzyme was also inhibited by increasing concentrations of L-aspartate. This inhibition of acetyl-CoA-independent activity was demonstrated to be focused in the biotin carboxylation domain of the enzyme, and it had no effect on the oxamate-induced oxaloacetate decarboxylation reaction that occurs in the carboxyl transferase domain. L-Aspartate was shown to competitively inhibit bicarbonate-dependent MgATP cleavage with :Atsepect to MgATP but also probably inhibits carboxybiotin formation and/or translocation of the carboxybiotin to the site of pyruvate carboxylation. Unlike acetyl-CoA, L-aspartate has no effect on the coupling between MgATP cleavage and oxdoacetate formation. The results suggest that the three allosteric effector sites (acetyl-CoA, MgTNP-ATP, and L-aspartate) are spatially distinct but connected by a network of allosteric interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available