4.4 Article

Subtle Dynamics of holo Glutamine Binding Protein Revealed with a Rigid Paramagnetic Probe

Journal

BIOCHEMISTRY
Volume 53, Issue 9, Pages 1403-1409

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi4015715

Keywords

-

Funding

  1. Ministry of Science and Technology of China [2013CB910200, 2009CB918600]
  2. National Natural Sciences Foundation of China [31225007, 21073230, 31170728]
  3. Chinese Academy of Sciences [KJCX2-EW-W05]

Ask authors/readers for more resources

Bacterial periplasmic binding proteins (PBPs) are involved in the translocation of small molecules in the periplasm. To unload, the two domains of a PBP open up, allowing the ligand to exit. However, it is not clear whether there are dynamics near the binding site which can facilitate the rapid dissociation of a ligand. To visualize such dynamics, we utilized paramagnetic relaxation enhancement (PRE) NMR and introduced a rigid paramagnetic probe to a PBP, glutamine-binding protein (QBP) with its cognate ligand bound. A paramagnetic Cu(II) ion is sandwiched between an engineered di-histidine motif at a helix and an NTA capping molecule. The afforded paramagnetic probe is so rigid that PRE values calculated from a single structure of holo QBP largely agree with the observed values. The remaining PRE discrepancies, however, manifest dynamics of a loop in the opposite domain from the paramagnetic probe. This loop packs against the glutamine ligand in the holo QBP and undergoes fluctuations upon ligand dissociation, as assessed by steered molecular dynamics simulations. As such, the loop dynamics, occurring for a small population in nanosecond to microsecond time scale, may be related to the ligand dissociation process. The rigid paramagnetic probe described herein can be grafted to other protein systems for structure and dynamics studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available