4.7 Article

Effects of S-nitrosation of hemoglobin on hypoxic pulmonary vasoconstriction and nitric oxide flux

Journal

Publisher

AMER THORACIC SOC
DOI: 10.1164/ajrccm.163.5.2007172

Keywords

-

Funding

  1. NHLBI NIH HHS [HL-03796, HL-45571] Funding Source: Medline

Ask authors/readers for more resources

Free hemoglobin (Hb) augments hypoxic pulmonary vasoconstriction (HPV), ostensibly by scavenging nitric oxide (NO). However, recent evidence suggests that Hb that is S-nitrosated may act as an NO donor and vasodilator. We studied the effects of oxyHb, Hb that is chemically modified to prevent heme binding or oxidation of NO (cyanometHb), and Hb that is S-nitrosated (SNO-Hb and SNO-cyanometHb) on HPV, expired NO (eNO), and perfusate S-nitrosothiol (SNO) concentration in isolated, perfused rabbit lungs. Perfusate containing either 4 muM oxyHb or SNO-Hb increased normoxic pulmonary artery pressure (Ppa), augmented HPV dramatically, and resulted in an 80% fall in eNO in comparison to perfusion with buffer, whereas 4 muM cyanometHb or SNO-cynanometHb had no effect on these variables. Excess glutathione (GSH) added to perfusate containing SNO-Hb resulted in a 20 to 40% fall in the perfusate SNO concentration, with a concomitant increase in metHb content, without affecting Ppa, HPV, or eNO. In conclusion, free Hb augments HPV by scavenging NO, an effect that is not prevented by S-nitrosation. NO released from SNO-Hb in the presence of GSH does not produce measurable vascular effects in the lung or changes in eNO because of immediate oxidation and metHb formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available