4.6 Article

Actin rearrangement-inducing factor of baculoviruses is tyrosine phosphorylated and colocalizes to F-actin at the plasma membrane

Journal

JOURNAL OF VIROLOGY
Volume 75, Issue 8, Pages 3771-3778

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.75.8.3771-3778.2001

Keywords

-

Categories

Ask authors/readers for more resources

In previous studies we have identified actin rearrangement-inducing factor 1 as an early gene product of Autographa californica multicapsid nuclear polyhedrosis virus that is involved in the remodeling of the actin cytoskeleton. We have constructed viral recombinants with a mutated Arif-1 open reading frame that confirm the causal link of Arif-1 expression and the actin rearrangement observed as accumulation of F-actin at the plasma membrane at 3 to 7 h postinfection. Infection with Arif mutant viruses leads to the loss of actin accumulation at the plasma membrane in TN-368 cells, although in the course of infection, early actin cables and nuclear F-actin are observed as in wild-type-infected cells. By immunofluorescence studies, we have demonstrated the localization of Arif-1 at the plasma membrane, and confocal imaging reveals the colocalization to F-actin. Accordingly, the similar to 47-kDa Arif-1 protein is observed exclusively in membrane fractions prepared at 4 to 48 h postinfection, with a decrease at 24 h postinfection. Phosphatase treatment suggests that Arif-1 is modified by phosphorylation, Antibodies against phosphotyrosine precipitate Arif-1 from membrane fractions, indicating that Arif-1 becomes tyrosine phosphorylated during the early and late phases of infection. In summary, our results indicate that functional Arif-1 is tyrosine phosphorylated and is located at the plasma membrane as a component of the actin rearrangement-inducing complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available