4.5 Article

Myh11R247C/R247C mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity

Journal

JOURNAL OF BIOMECHANICS
Volume 48, Issue 1, Pages 113-121

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2014.10.031

Keywords

Familial thoracic aortic aneurysms and dissections; Smooth muscle myosin heavy chain; Actomyosin functionality; Wall stress and stiffness

Funding

  1. National Institutes of Health [R01 HL062594, P50 HL083794, R03 EB016810, U01 HL116323]
  2. National Marfan Foundation

Ask authors/readers for more resources

Genetic studies in patients reveal that mutations to genes that encode contractile proteins in medial smooth muscle cells can cause thoracic aortic aneurysms and dissections. Mouse models of such mutations, including Acta2(-/-) and Myh11(R247C/R247C), surprisingly do not present with any severe vascular phenotype under normal conditions. This observation raises the question whether these mutations nevertheless render the thoracic aorta increasingly vulnerable to aneurysms or dissections in the presence of additional, epigenetic, factors such as hypertension, a known risk factor for thoracic aortic disease. Accordingly, we compared the structure and biaxial mechanical properties of the ascending and descending thoracic aorta from male wild-type and Myh11(R247C/R247C) mice under normotension and induced hypertension. On average, the mutant aortas exhibited near normal biomechanics under normotensive hemodynamics and near normal adaptations to hypertensive hemodynamics, yet the latter led to intramural delaminations or premature deaths in over 20% of these mice. Moreover, the delaminated vessels exhibited localized pools of mucoid material, similar to the common histopathologic characteristic observed in aortas from humans affected by thoracic aortic aneurysms and dissections. The present findings suggest, therefore, that mutations to smooth muscle cell contractile proteins may place the thoracic aorta at increased risk to epigenetic factors and that there is a need to focus on focal, not global, changes in aortic structure and properties, including the pooling of glycosaminoglycans/proteoglycans that may lead to thoracic aortic dissection. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available