4.4 Review

The motor cortex and amyotrophic lateral sclerosis

Journal

MUSCLE & NERVE
Volume 24, Issue 4, Pages 564-573

Publisher

WILEY
DOI: 10.1002/mus.1042

Keywords

amyotrophic lateral sclerosis; corticomotoneurons; motor cortex; transneuronal degeneration

Ask authors/readers for more resources

On theoretical grounds, abnormalities of the motor cortex in patients with amyotrophic lateral sclerosis (ALS) could lead to anterograde (dying-forward) transneuronal degeneration of the anterior horn cells as suggested by Charcot. Conversely, retrograde (dying-back) degeneration of the corticospinal tracts could affect the motor cortex. Evidence derived from clinical, neuropathological, static, and functional imaging, and physiological studies, favors the occurrence of anterograde degeneration. It is hypothesized that transneuronal degeneration in ALS is an active excitotoxic process in which live but dysfunctional corticomotoneurons, originating in the primary motor cortex, drive the anterior horn cell into metabolic deficit. When this is marked, it will result in more rapid and widespread loss of lower motor neurons, In contrast, slow loss of corticomotoneurons, as occurs in primary lateral sclerosis (PLS), precludes excitotoxic drive and is incompatible with anterograde degeneration. Preservation of slow-conducting non-M1 direct pathways in PLS is not associated with excitotoxicity, and anterior horn cells survive for long periods of time. (C) 2001 John Wiley & Sons, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available