4.5 Article

Molecular filtered Rayleigh scattering applied to combustion

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 12, Issue 4, Pages 452-466

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/12/4/309

Keywords

filtered Rayleigh scattering; temperature imaging; combustion; stagnation flow

Ask authors/readers for more resources

Molecular filtered Rayleigh scattering (FRS), employing an iodine vapour filter and an injection-seeded Nd:YAG laser, was utilized to measure instantaneous and average temperature fields in combustion environments. With FRS thermometry, the vapour within the cell strongly absorbs background scattering from surfaces and particles, while much of the Doppler-broadened Rayleigh scattering is not absorbed by the iodine transition; the gas temperature can then be deduced from the measured transmission of the molecular Rayleigh scattering. For demonstration purposes and to evaluate the accuracy of the technique, we employed a near-adiabatic hydrogen-air flame. The accuracy of the FRS measurements was investigated by comparing FRS-derived temperatures with those (1) calculated assuming adiabatic equilibrium conditions and (2) recorded with the CARS (coherent anti-Stokes Raman spectroscopy) technique. For the hydrogen-air flames, the FRS method gave temperatures within 2% of the expected value. The FRS thermometry instrument was then applied to a stagnation-flow, premixed methane-air flame, images recorded here demonstrate the utility of the FRS method for temperature imaging, particularly near surfaces. In this flow field, we compared the FRS temperatures with those from a one-dimensional model and investigated the radial extent of the uniform temperature region, to assess the assumption of one-dimensionality. In addition, we demonstrated the feasibility of simultaneous measurements of the temperature and velocity fields, the latter derived from the particle image velocimetry technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available