4.6 Article

Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells

Journal

THYROID
Volume 11, Issue 4, Pages 315-325

Publisher

MARY ANN LIEBERT INC PUBL
DOI: 10.1089/10507250152039046

Keywords

-

Funding

  1. NCI NIH HHS [CA77614] Funding Source: Medline

Ask authors/readers for more resources

Little information exists concerning the response of anaplastic thyroid carcinoma (ATC) cells to histone deacetylase inhibitors (HDAIs). In this study, the cellular response to the histone deacetylase inhibitors, sodium butyrate and trichostatin A, was analyzed in cell lines derived from primary anaplastic thyroid carcinomas. HDAIs repress the growth (proliferation) of ATC cell lines, independent of p53 status, through the induction of apoptosis and differential cell cycle arrest (arrested in G(1) and G(2)/M). Apoptosis increases in response to drug treatment and is associated with the appearance of the cleaved form of the caspase substrate, poly-(ADP-ribose) polymerase (PARP). Cell cycle arrest is associated with the reduced expression of cyclins A and B, the increased expression of the cyclin-dependent kinase inhibitors, p21(Cip1/WAF1) and p27(Kip1), the reduced phosphorylation of the retinoblastoma protein (pRb), and a reduction in cdk2 and cdk1-associated kinase activities. In ATC cells overexpressing cyclin E, drug treatment failed to replicate these events. These results suggest that growth inhibition of ATC cells by HDAIs is due to the promotion of apoptosis through the activation of the caspase cascade and the induction of cell cycle arrest via a reduction in cdk2- and cdk1-associated kinase activities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available