4.4 Article

Structural and Functional Consequences of the Cardiac Troponin C L48Q Ca2+-Sensitizing Mutation

Journal

BIOCHEMISTRY
Volume 51, Issue 22, Pages 4473-4487

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi3003007

Keywords

-

Funding

  1. National Institutes of Health [HL65497, GM50789]
  2. Canadian Institutes of Health Research
  3. Heart and Stroke Foundation of Canada
  4. Alberta Heritage Foundation for Medical Research
  5. American Heart Association
  6. Department of Defense
  7. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca2+ sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca2+ binding properties and studied the effects on the Ca2+ sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca2+ binding affinity and Ca2+ sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca2+ sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca2+ and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca2+ sensitivity can do so by modulating Ca2+ and cTnI binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available