3.8 Article

Calmodulin and profilin coregulate axon outgrowth in Drosophila

Journal

JOURNAL OF NEUROBIOLOGY
Volume 47, Issue 1, Pages 26-38

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/neu.1013

Keywords

calmodulin; profilin; axon guidance; motility; Drosophila

Categories

Funding

  1. NIGMS NIH HHS [5T34-GM08030-17/18] Funding Source: Medline
  2. NINDS NIH HHS [NS38530-01] Funding Source: Medline

Ask authors/readers for more resources

Coordinated regulation of actin cytoskeletal dynamics is critical to growth cone movement. The intracellular molecules calmodulin and profilin actively regulate actin-based motility and participate in the signaling pathways used to steer growth cones. Here we show that in the developing Drosophila embryo, calmodulin and profilin convey complimentary information that is necessary for appropriate growth cone advance. Reducing calmodulin activity by expression of a dominant inhibitor (KA) stalls axon extension of pioneer neurons within the CNS, while a partial loss of profilin function decreases extension of motor axons in the periphery. Yet, surprisingly, when calmodulin and profilin are simultaneously reduced, the ability of both CNS pioneer axons and motor axons to extend beyond the choice points is restored. In the CNS, at the time when growth cones must decide whether to cross or not to cross the midline, a reduction in calmodulin and/or roundabout signaling causes axons to cross the midline inappropriately. These inappropriate crossings are suppressed when profilin activity is simultaneously reduced. Interestingly, the mutual suppression of calmodulin and profilin activity requires a minimal level of profilin. In KA combinations with profilin null alleles, defects in axon extension and midline guidance are synergistically enhanced rather than suppressed. Together, our data indicate that the growth cone must coordinate the activity of both calmodulin and profilin in order to advance past selected choice points, including those dictating midline crossovers. (C) 2001 John Wiley & Sons, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available