4.4 Article

Improved prediction of proximal femoral fracture load using nonlinear finite element models

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 23, Issue 3, Pages 165-173

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S1350-4533(01)00045-5

Keywords

finite element; femur; bone strength; nonlinear; hip fracture

Ask authors/readers for more resources

Hip fracture, which is often due to osteoporosis or other conditions affecting bone strength. can lead to permanent disability, pneumonia, pulmonary embolism, and/or death. Great effort has been directed toward developing noninvasive methods for evaluating proximal femoral strength (fracture load), with the goal of assessing fracture risk. Previously, computed tomographic scan-based, linens finite element (FE) models were used to estimate proximal femoral fracture loads ex vivo in two load configurations, one approximating joint loading during single-limb stance and the other simulating impact from a fall. Measured and computed fracture loads were correlated (stance, r=0.867; fall, r=0.949). However, precision for the stance configuration was insufficient to identify subjects with below average fracture loads reliably. The present study examined whether, for this configuration, nonlinear FE models could be used to identify these subjects. These models were found to predict fracture load within +/-2.0 kN (r=0.962). This level of precision is sufficient to identify 97.5% of femora with fracture loads 1.3 standard deviations below the mean as having below average fracture loads. Accordingly, 20% of subjects with below average fracture loads, i.e. those with the lowest fracture loads and likely to be at greatest risk of fracture, would be correctly identified with at least 97.5% reliability. This FE modeling method will be a powerful tool for studies of hip fracture. (C) 2001 IPEM. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available