4.4 Article

Dynamics of Nucleosomes Assessed with Time-Lapse High-Speed Atomic Force Microscopy

Journal

BIOCHEMISTRY
Volume 50, Issue 37, Pages 7901-7908

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi200946z

Keywords

-

Funding

  1. U.S. Department of Energy [DE-FG02-08ER64579]
  2. North Atlantic Treaty Organization [SfP 983204]
  3. National Science Foundation [EPS-0701892]
  4. Nebraska Research Initiative (NRI)
  5. Grants-in-Aid for Scientific Research [21113002, 20221006] Funding Source: KAKEN

Ask authors/readers for more resources

A fundamental challenge of gene regulation is the accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are quite dynamic rather than static systems, as they were once considered. Direct data are needed to characterize the dynamics of nucleosomes. Specifically, if nucleosomes are dynamic, the following questions need to be answered. What is the range of nucleosome dynamics? Is a non-ATP-dependent unwrapping of nucleosomes possible? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? In previous studies using time-lapse atomic force microscopy (AFM) imaging, we were able, for the first time, to observe spontaneous, ATP-independent unwrapping of nucleosomes. However, low temporal resolution did not allow visualization of various pathways of nucleosome dynamics. In the studies described here, we applied high-speed time-lapse AFM (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale to study the nucleosome dynamics. The mononucleosomes were assembled on a 353 bp DNA substrate containing nucleosome-specific 601 sequence. With HS-AFM, we were able to observe the dynamics of nucleosome on a subsecond time scale and visualize various pathways of nucleosome dynamics, such as sliding and unwrapping to various extents, including complete dissociation. These studies highlight an important role of electrostatic interactions in chromatin dynamics. Overall, our findings shed new light on nucleosome dynamics and provide a novel hypothesis for the mechanisms controlling the spontaneous dynamics of chromatin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available