4.7 Article

Protein kinase C modulates NMDA receptor trafficking and gating

Journal

NATURE NEUROSCIENCE
Volume 4, Issue 4, Pages 382-390

Publisher

NATURE AMERICA INC
DOI: 10.1038/86028

Keywords

-

Categories

Funding

  1. NINDS NIH HHS [NS 07512, NS 31282, NS 20752] Funding Source: Medline

Ask authors/readers for more resources

Regulation of neuronal N-methyl-D-aspartate receptors (NMDARs) by protein kinases is critical in synaptic transmission. However, the molecular mechanisms underlying protein kinase C (PKC) potentiation of NMDARs are uncertain. Here we demonstrate that PKC increases NMDA channel opening rate and delivers new NMDA channels to the plasma membrane through regulated exocytosis. PKC induced a rapid delivery of functional NMDARs to the cell surface and increased surface NR1 immunofluorescence in Xenopus oocytes expressing NMDARs. PKC potentiation was inhibited by botulinum neurotoxin A and a dominant negative mutant of soluble NSF-associated protein (SNAP-25), suggesting that receptor trafficking occurs via SNARE-dependent exocytosis. In neurons, PKC induced a rapid delivery of functional NMDARs, assessed by electrophysiology, and an increase in NMDAR clusters on the surface of dendrites and dendritic spines, as indicated by immunofluorescence. Thus, PKC regulates NMDAR channel gating and trafficking in recombinant systems and in neurons, mechanisms that may be relevant to synaptic plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available