4.4 Article

Regulation of ornibactin biosynthesis and N-acyl-L-homoserine lactone production by CepR in Burkholderia cepacia

Journal

JOURNAL OF BACTERIOLOGY
Volume 183, Issue 7, Pages 2212-2218

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.183.7.2212-2218.2001

Keywords

-

Categories

Ask authors/readers for more resources

The CepR-CepI quorum-sensing system has been shown to regulate production of the siderophore ornibactin, extracellular proteases, and N-octanoyl-homoserine-L-lactone (OHL) in Burkholderia cepacia strain K56-2. To examine the effect of cepIR on production of other siderophores! cepR mutants were constructed in strains that produce pyochelin in addition to salicylic acid and ornibactins. Pc715j-R1 (cepR::tp) hyperproduced ornibactin but produced parental levels of pyochelin and salicylic acid, suggesting that CepR is a negative regulator of ornibactin synthesis but not pyochelin or salicylic acid. Pc715j-R1 was also protease deficient and OHL negative. The effects of cepR on ornibactin biosynthetic genes were examined by constructing cepR pvdA-lacZ and cepR pvdD-lacZ mutants and monitoring beta -galactosidase activity. There was an increase in expression of pvdA in the cepR mutant compared to the level in its parent strain in both low- and high-iron media during stationary phase. When the outer membrane protein profiles of a cepR mutant and the wild-type strain,pere compared on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, there did not appear to be any difference in levels of expression of the ornibactin receptor. Experiments with cepI-lacZ and cepR-lacZ transcriptional fusions indicated that cepI was not expressed in the cepR mutant and that cepR acts as a negative regulator of its own expression, By a thin-layer chromatography assay for N-acyl homoserine lactones, OHL and N-hexanoyl-L-homoserine lactone (HHL) were detectable in K56-2 and Pc715j, both wild type strains. OHL was not detectable and HHL was only weakly detectable in the cepI and cepR mutants. These results suggest that CepR is both a positive and negative transcriptional regulator and that CepR may influence the expression of ornibactin biosynthetic genes in addition to the expression of the cepIR quorum-sensing system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available