4.5 Article

Mating induces gonadotropin-releasing hormone neuronal activation in anosmic female ferrets

Journal

BIOLOGY OF REPRODUCTION
Volume 64, Issue 4, Pages 1100-1105

Publisher

SOC STUDY REPRODUCTION
DOI: 10.1095/biolreprod64.4.1100

Keywords

GnRH; hypothalamus; ovulation; pheromones; reproductive behavior

Funding

  1. NICHD NIH HHS [HD21094] Funding Source: Medline

Ask authors/readers for more resources

In females of both spontaneously and induced ovulating species, pheromones from male conspecifics can directly stimulate GnRH neuronal activity, thereby inducing pituitary LH secretion and stimulating the onset of estrus. However, whether pheromones contribute to the steroid- or mating-induced preovulatory activation of GnRH neurons is less clear. Previous studies in the ferret, an induced ovulator, raised the possibility that olfactory cues contribute to the ability of genital-somatosensory stimulation to activate GnRH neurons in the mediobasal hypothalamus (MBH). In the present study the percentage of GnRH neurons colabeled with Fos-immunoreactivity (IR), used as a marker for neuronal activation, was investigated in the MBH of mated gonadectomized, estradiol-treated female ferrets in which both nares were occluded. In addition, the percentage of GnRH neurons colabeled with Fos-IR was examined in the MBH of gonadectomized, estradiol-treated female ferrets exposed to male bedding. Bilateral nares occlusion successfully blocked mating or odor-induced increments in Fos-IR in central olfactory regions, including the cortical and medial amygdala. By contrast, the percentage of GnRH neurons expressing Fos-IR did not differ between mated nares- and sham-occluded females. Exposure to male bedding alone failed to induce Fos-IR in MBH GnRH neurons. Thus, the mating-induced preovulatory activation of GnRH neurons in the female ferret's MBH appears to rely solely on genital-somatosensory as opposed to olfactory inputs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available