4.4 Article

Structural Transitions of Translation Initiation Factor IF2 upon GDPNP and GDP Binding in Solution

Journal

BIOCHEMISTRY
Volume 50, Issue 45, Pages 9779-9787

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi200938q

Keywords

-

Funding

  1. Danish Natural Science Research Council [21-03-0592, 21-03-0465]
  2. Carlsberg [2005-1-126, 2006-1-167, 2007-1-261]

Ask authors/readers for more resources

Three protein factors ensure rapid and accurate initiation of translation in bacteria. Translation initiation factor IF2 is a ribosome-dependent GTPase, which is important for correct positioning of initiator tRNA on the 30S subunit as well as ribosomal subunit joining. The solution structure of the free C-terminal part of IF2 (IF2C, comprising domains IV to VI-2) was previously determined by small-angle X-ray scattering (SAXS) [Rasmussen, L. C., et al. (2008) Biochemistry 47, 5590-5598]. In this study, adding GDP or nonhydrolyzable GTP analogue GDPNP to the protein in solution caused structural changes in the protein, in agreement with recent data determined via isothermal titration calorimetry [Hauryliuk, V., et al. (2009) J. Mol. Biol. 394, 621-626]. The p(r) function indicated an elongated conformation supported by radii of gyration of 40.1 and 44.9 angstrom and maximum dimensions of similar to 125 and 150 angstrom for IF2C with GDPNP and GDP, respectively. The SAXS data were used to model the structure of IF2C bound to either GDPNP or GDP. The structural transitions of IF2C upon GDPNP binding and following nucleotide hydrolysis support the concept of cofactor-dependent conformational switching rather than the classical model for GTPase activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available