4.4 Article

Kinetic Basis of Nucleotide Selection Employed by a Protein Template-Dependent DNA Polymerase

Journal

BIOCHEMISTRY
Volume 49, Issue 26, Pages 5504-5510

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi100433x

Keywords

-

Funding

  1. National Institutes of Health [GM079403, ES009127]
  2. American Heart Association [0815382D]
  3. International PEO Scholar Award
  4. Pulmonary National Institutes of Health [5T32HL007946]

Ask authors/readers for more resources

Rev1, a Y-family DNA polymerase, contributes to spontaneous and DNA damage-induced mutagenic events. In this paper, we have employed pre-steady-state kinetic methodology to establish a kinetic basis for nucleotide selection by human Rev1, a unique nucleotidyl transferase that uses a protein template-directed mechanism to preferentially instruct dCTP incorporation. This work demonstrated that the high incorporation efficiency of dCTP is dependent on both substrates: an incoming dCTP and a templating base dG. The extremely low base substitution fidelity of human Rev1 (100 to 10(-5)) was due to the preferred misincorporation of dCTP with templating bases dA, dT, and dC over correct dNTPs. Using non-natural nucleotide analogues, we showed that hydrogen bonding interactions between residue R357 of human Rev1 and an incoming dNTP are not essential for DNA synthesis. Lastly, human Rev1 discriminates between ribonucleotides and deoxyribonucleotides mainly by reducing the rate of incorporation, and the sugar selectivity of human Rev1 is sensitive to both the size and orientation oldie 2'-substituent of a ribonucleotide.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available