4.7 Article

Cosmological evolution of linear bias

Journal

ASTROPHYSICAL JOURNAL
Volume 550, Issue 2, Pages 522-527

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/319797

Keywords

cosmology : theory; large-scale structure of universe

Ask authors/readers for more resources

Using linear perturbation theory and the Friedmann-Lemaitre solutions of the cosmological field equations, we analytically derive a second-order differential equation for the evolution of the linear bias factor, b(z), between the background matter and a mass-tracer fluctuation field. We find b(z) to be a strongly dependent function of redshift in all cosmological models. Comparing our analytical solution with the semianalytic model of Mo & White, which utilizes the Press-Schechter formalism and gravitationally induced evolution of clustering, we find an extremely good agreement even at large redshifts, once we normalize to the same bias value at two different epochs, one of which is the present. Furthermore, our analytic b(z) function agrees well with the outcome of N-body simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available