4.4 Article

Helicobacter pylori NikR's Interaction with DNA: A Two-Tiered Mode of Recognition

Journal

BIOCHEMISTRY
Volume 48, Issue 3, Pages 527-536

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi801481j

Keywords

-

Funding

  1. University of Maryland Baltimore

Ask authors/readers for more resources

HPNikR is a prokaryotic nickel binding transcription factor found in the virulent bacterium Helicobacter pylori. HPNikR regulates the expression of multiple genes as an activator or repressor, including those involved in nickel ion homeostasis, acid adaptation, and iron uptake. The target operator sequences of the genes regulated by HPNikR do not contain identifiable symmetrical recognition sites, and the mechanism by which HPNikR distinguishes between the genes it regulates is not understood. Using competitive fluorescence anisotropy (FA) and electrophoretic gel mobility shift (EMSA) assays, the interactions between HPNikR and the target operator sequences of the genes directly regulated (ureA, NixA, NikR, Fur OPI, Fur OPII, Frpb4, FecA3, and exbB) were characterized. These studies revealed that HPNikR utilizes a two-tiered mode of DNA recognition by binding to some genes with high affinity and others with low affinity. The genes that are tightly regulated by HPNikR encode proteins that utilize nickel, while those that are less tightly regulated encode other types of proteins. The affinities of low-affinity metal ions for a second metal binding site were determined to be in the micromolar regime, and a contribution of electrostatics to the HPNikR-DNA binding event was determined. Detailed studies of the role of sequence length and identity for the interaction between HPNikR and ureA revealed a specific length requirement for DNA binding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available