4.4 Article

Structure of the N Terminus of a Nonmuscle α-Tropomyosin in Complex with the C Terminus: Implications for Actin Binding

Journal

BIOCHEMISTRY
Volume 48, Issue 6, Pages 1272-1283

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi801861k

Keywords

-

Funding

  1. NIH [GM-36326]
  2. UMDNJ Foundation
  3. Community Outreach program of the Northeast Structural Genomics Consortium

Ask authors/readers for more resources

Tropomyosin is a coiled-coil actin binding protein that stabilizes the filament, protects it from severing, and cooperatively regulates actin's interaction with myosin. Depending on the first coding exon, tropomyosins are low molecular weight (LMW), found in the cytoskeleton and predominant in transformed cells, or high molecular weight (HMW), found in muscle and nonmuscle cells. The N- and C-terminal ends form a complex that allows tropomyosin to associate N terminus-to-C terminus along the actin filament. We determined the structure of a LMW tropomyosin N-terminal model peptide complexed with a smooth/nonmuscle tropomyosin C-terminal peptide. Using NMR and circular dichroism we showed that both ends become more helical upon complex formation but that the C-terminal peptide is partially unfolded at 20 degrees C. The first five residues of the N terminus that are disordered in the free peptide are more helical and are part of the overlap complex. NMR data indicate residues 2-17 bind to the C terminus in the complex. The data support a model for the LMW overlap complex that is homologous to the striated muscle tropomyosin complex in which the ends are oriented in parallel N terminus-to-C terminus with the plane of the N-terminal coiled coil perpendicular to the plane of the C terminus. The main difference is that the overlap spans 16 residues in the LMW tropomyosin complex compared to 11 residues in the HMW striated muscle overlap complex. We discuss the relevance of a stable but dynamic intermolecular junction for high-affinity binding to actin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available