4.4 Article

Half-Site Inhibition of Dimeric Kinesin Head Domains by Monomeric Tail Domains

Journal

BIOCHEMISTRY
Volume 48, Issue 15, Pages 3448-3456

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi8022575

Keywords

-

Funding

  1. National Institutes of Health Grant [NS25980]
  2. National Science Foundation [0615549]
  3. HHMI Undergraduate Science Education Program [52005865]
  4. Direct For Biological Sciences
  5. Div Of Molecular and Cellular Bioscience [0615549] Funding Source: National Science Foundation

Ask authors/readers for more resources

The two heavy chains of kinesin-1 are dimerized through extensive coiled coil regions and fold into an inactive conformation through interaction of the C-terminal tail domains with the N-terminal motor (head) domains. Although this potentially allows a dimer of tail domains to interact symmetrically with a dimer of head domains, we report here that only one of the two available monomeric tail peptides is sufficient for tight binding and inhibition of a dimer of head domains. With a dimeric tail construct, the other tail peptide does not make tight contact with the head dimer and can bind a second head dimer to form a complex containing one tail dimer and two head dimers. The IAK domain and neighboring positively charged region of the tail is sufficient for tight half-site interaction with a dimer of heads. The interaction of tails with monomeric heads is weak, but a head dimer produced by the dimerization of the neck coil is not required because an artificial dimer of head domains also binds monomeric tail peptides with half-site stoichiometry in the complete absence of the native neck coil. The binding of tail peptides to head dimers is fast and readily reversible as determined by FRET between mant-ADP bound to the head dimer and a tail labeled with GFP. The association and dissociation rates are 81,mu M-1 s(-1) and 32 s(-1), respectively. This half-site interaction suggests that the second tail peptide in a folded kinesin-1 might be available to bind other molecules while kinesin-1 remained folded.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available