4.4 Article

Cyclopiazonic Acid Biosynthesis in Aspergillus sp.: Characterization of a Reductase-like R* Domain in Cyclopiazonate Synthetase That Forms and Releases cyclo-Acetoacetyl-L-tryptophan

Journal

BIOCHEMISTRY
Volume 48, Issue 36, Pages 8746-8757

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi901123r

Keywords

-

Funding

  1. National Institutes of Health [GM20011]
  2. Swiss National Science Foundation
  3. Ernst Schering Foundation

Ask authors/readers for more resources

The fungal neurotoxin (x-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca2+-ATPase, has a pentacyclic indole tetramic acid scaffold that arises from one molecule of tryptophan, acetyl-CoA, malonyl-CoA, and dimethylallyl pyrophosphate by consecutive action of three enzymes, CpaS, CpaD, and CpaO. CpaS is a hybrid, two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that makes and releases cyclo-acetoacetyl-L-tryptophan (cAATrp), the tetramic acid that serves as substrate for subsequent prenylation and oxidative cyclization to the Five ring CPA scaffold. The NRPS module in CpaS has a predicted four-domain organization of condensation, adenylation, thiolation, and reductase* (C-A-T-R*), where R* lacks the critical Ser-Tyr-Lys catalytic triad of the short chain dehydrogenase/reductase (SDR) superfamily. By heterologous overproduction in Escherichia coli of the 56 kDa Aspergillus flavus CpaS TR* didomain and the single T and R* domains, we demonstrate that CpaS catalyzes a Dieckmann-type cyclization on the N-acetoacetyl-Trp intermediate bound in thioester linkage to the phosphopantetheinyl ann of the T domain to form and release cAATrp. This occurs without any participation of NAD(P)H, so R* does not function as a canonical SDR family member. Use of the T and R* domains in in trans assays enabled multiple turnovers and evaluation of specific mutants. Mutation of the 133803 residue in the R* domain, conserved in other fungal tetramate synthetases, abolished activity both in in trans and in cis (TR*) activity assays. It is likely that cyclization of beta-ketoacylaminoacyl-S-pantetheinyl intermediates to released tetramates represents a default cyclization/release route for redox-incompetent R* domains embedded in NRPS assembly lines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available