4.7 Article Proceedings Paper

Thermal study of the effect of several solvents on polymerization of acrylonitrile and their subsequent pyrolysis

Journal

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS
Volume 58, Issue -, Pages 155-172

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0165-2370(00)00203-5

Keywords

acrylonitrile; polyacrylonitrile; N,N-dimethylformamide; pyrolysis; cyclization; carbon fibres; pyridine derivatives; solvents; processing

Ask authors/readers for more resources

The polymerization of acrylonitrile to polyacrylonitrile (PAN) has been studied using several solvents: N,N-dimethylformamide (DMF), hexane, toluene, water, and in bulk form (no solvent). The addition of DMF is the only case where both monomer and polymer are soluble in the solvent. Thermal analyses of the resultant products after polymerization have been performed by differential scanning calorimetry and pyrolysis-gas chromatography/ mass spectrometry. The effect of the solvents employed as media for polymerization is interpreted from the results of the thermal and structural (X-ray diffraction) methods. The polymer samples obtained when using water or toluene as solvents have the greater content of amorphous components compared to the others. The amide molecules are difficult to completely eliminate in the product obtained after the polymerization reaction and even after prolonged heating at 110 degreesC and remain occluded. DMF can be considered to exert a plasticized effect on PAN and is even capable of forming complexes by dipolar bonding. Asa result of this interaction, the thermogram is quite different from the other samples studied in the present work, showing a single sharp exothernic peak. This is associated with nitrile group polymerization (cyclization) of PAN. It is deduced that the amount of heat evolved as well as the temperature interval over which it is released are influenced by the chemical. processing of PAN, in particular when using DMF as solvent for both monomer and polymer. Pyrolysis of the different PAN samples revealed the release of occluded solvent molecules, mainly when using DMF, and compounds produced from the thermal degradation processes. Different types of cyclized compounds, such as pyridine derivatives and aromatic nitriles were identified. All these compounds could be derived from cyclized PAN structures which are not completely degraded by the thermal treatment of pyrolysis. Atkyldinitriles have also been tentatively identified associated with the final molecular breakdown of cyclized structures with six-member rings by pyrolysis. Valuable complementary information on the structure of the PAN samples (homopolymer) obtained using the different processing approaches involving several solvent media has been provided by pyrolysis. The present results will improve our understanding of the evolution of the structure and properties of carbon and activated carbon fibres which will enable us to establish processing strategies in order to obtain these materials under adequate and reproducible conditions. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available