4.4 Article

Recombinant Mammalian Tubulin Polyglutamylase TTLL7 Performs both Initiation and Elongation of Polyglutamylation on β-Tubulin through a Random Sequential

Journal

BIOCHEMISTRY
Volume 48, Issue 5, Pages 1084-1093

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi802047y

Keywords

-

Funding

  1. Mitsubishi Kagaku Institute
  2. WAKATE-S
  3. JSPS

Ask authors/readers for more resources

Tubulins undergo unique post-translational modifications, such as tyrosination, polyglutamylation, and polyglycylation. These modifications are performed by members of a protein family, the tubulin tyrosine ligase (TTL)-like (TTLL) family, which is characterized by the presence of a highly conserved TTL domain. We and others have recently identified tubulin polyglutamylases in the TTLL family [Janke, C., et al. (2005) Science 308, 1758-1762; Ikegami, K., et al. (2006) J. Biol. Chem. 281, 30707-30716; an Dijk, J., et al. (2007) Mol. Cell 26, 437-448]. Previously, we identified TTLL7 as beta-tubulin-selective polyglutamylase. However, there is controversy over whether TTLL7 functions as an initiase, elongase, or both in polyglutamylation. In this report, we investigate the polyglutamylation reaction by TTLL7 by employing a recombinant enzyme and in vitro reaction. Two-dimensional electrophoresis and tandem mass spectrometry showed that TTLL7 performed both the initiation and elongation of polyglutamylation on beta-tubulin. Recombinant TTLL7 performed with a maximal and specific activity to polymerized tubulin at a neutral pH and a lower salt concentration. The initial rate and inhibitor analyses revealed that the mechanism of binding of three substrates, glutamate, ATP, and tubulin, to the enzyme was a random sequential pathway. Our findings provide evidence that mammalian TTLL7 performs both initiation and elongation in the polyglutamylation reaction on beta-tubulin through a random sequential pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available