4.4 Article

X-ray Structure of the High-Salt Form of the Peridinin-Chlorophyll a-Protein from the Dinoflagellate Amphidinium carterae: Modulation of the Spectral Properties of Pigments by the Protein Environment

Journal

BIOCHEMISTRY
Volume 48, Issue 21, Pages 4466-4475

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi802320q

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft
  2. Helmholtz Society in the framework of the Virtual Institute for Biological Structure Research [VH-VI-157]
  3. Macquarie University research development grant
  4. Research School of the Ruhr-University Bochum

Ask authors/readers for more resources

Light-harvesting complexes have evolved into very different structures but fulfill the same function, efficient harvesting of solar energy. In these complexes, pigments are fine-tuned and properly arranged to gather incoming photons. In the photosynthetic dinoflagellate Amphidinium carterae, two variants of the soluble light-harvesting complex PCP have been found [main form PCP (MFPCP) and high-salt PCP (HSPCP)], which show small variations in their pigment arrangement and tuning mechanisms. This feature makes them ideal models for studying pigment-protein interactions. Here we present the X-ray structure of the monomeric HSPCP determined at 2.1 angstrom resolution and compare it to the structure of trimeric MFPCP. Despite the high degree of structural similarity (rmsd C-alpha-C-alpha of 1.89 angstrom), the sequence variations lead to a changed overall pigment composition which includes the loss of two carotenoid molecules and a dramatic rearrangement of the chlorophyll phytol chains and of internal lipid molecules. On the basis of a detailed structural comparison, we favor a macrocycle geometry distortion of the chlorophylls rather than an electrostatic effect to explain energetic splitting of the chlorophyll a Q(y) bands [Ilagan, R. P. (2006) Biochemistry 45, 14052-14063]. Our analysis supports their assignment of peridinin 611* as the single blue-shifted peridinin in HSPCP but also highlights another electrostatic feature due to glutamate 202 which could add to the observed binding site asymmetry of the 611*/621* peridinin pair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available