4.8 Article

Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors

Journal

ANALYTICAL CHEMISTRY
Volume 73, Issue 7, Pages 1599-1604

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0015117

Keywords

-

Ask authors/readers for more resources

Combinatorial methods were used to search for active alloy electrocatalysts for use in enzyme-free amperometric glucose sensors. Electrode arrays (715-member) containing combinations of Pt, Pb, Au, Pd, and Ph were prepared and screened by converting anodic current to visible fluorescence. The most active compositions contained both Pt and Pb. Bulk quantities of catalysts with compositions corresponding to those identified in the screening experiments were prepared and characterized. The best alloy electrocatalysts catalyzed glucose oxidation at substantially more negative potentials than pure platinum in enzyme-free voltammetric measurements. They were also insensitive to potential interfering agents (ascorbic and uric acids, and 4-acetamidophenol), which are oxidized at slightly more positive potentials. Rotating disk electrode (RDE) experiments were carried out to study the catalytic mechanism. The improvement in catalytic performance was attributed to the inhibition of adsorption of oxidation products, which poison Pt electrodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available