4.4 Article

Photolabeling of Tissue Transglutaminase Reveals the Binding Mode of Potent Cinnamoyl Inhibitors

Journal

BIOCHEMISTRY
Volume 48, Issue 15, Pages 3346-3353

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi802021c

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council (NSERC)
  2. Canadian Institutes of Health Research (CIHR)

Ask authors/readers for more resources

We have recently developed a new class of cinnamoyl derivatives as potent tissue transglutaminase (TG2) inhibitors. Herein, we report the synthesis of a diazirine derivative of these inhibitors and its application to the photolabeling of its binding site on guinea pig liver transglutaminase. Two novel homology models were generated for this commonly studied TG2, which differ in the conformational state they represent. Tryptic digest and mass spectrometric analysis of the photolabeling experiment showed that only residue Cys230 was labeled, and our homology models were used to visualize these results. This visualization suggested that Cys230 is somewhat more solvent-exposed in the closed conformation of TG2, compared to the open conformation. Docking experiments suggested binding modes consistent with the labeling pattern that would block access to the tunnel leading to the active site, consistent with the observed mode of inhibition. However, while these modeling simulations favored the closed conformation as the target of our cinnamoyl inhibitors, native PAGE experiments indicated the open conformation of the enzyme in fact predominates in the presence of our photolabeling derivative. These results are important for understanding the binding modes of TG2 inhibitors in general and will be critical for the structure-based design of future inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available