4.7 Article

Super-resolution target identification from remotely sensed images using a Hopfield neural network

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/36.917895

Keywords

fuzzy image classification; Hopfield networks; image resolution; land cover; optimization methods; super-resolution object detection

Ask authors/readers for more resources

Fuzzy classification techniques have been developed recently to estimate the class composition of image pixels, but their output provides no indication of how these classes are distributed spatially within the instantaneous field of view represented by the pixel. As such, while the accuracy of land cover target identification has been improved using fuzzy classification, it remains for robust techniques that provide better spatial representation of land cover to be developed. Such techniques could provide more accurate land cover metrics for determining social or environmental policy, for example. The use of a Hopfield neural network to map the spatial distribution of classes more reliably using prior information of pixel composition determined from fuzzy classification was investigated. An approach was adopted that used the output from a fuzzy classification to constrain a Hopfield neural network formulated as an energy minimization tool, The network converges to a minimum of an energy function, defined as a goal and several constraints, Extracting the spatial distribution of target class components within each pixel was, therefore, formulated as a constraint satisfaction problem with an optimal solution determined by the minimum of the energy function. This energy minimum represents a best guess map of the spatial distribution of class components in each pixel. The technique was applied to both synthetic and simulated Landsat TM imagery, and the resultant maps provided an accurate and improved representation of the land covers studied, with root mean square errors (RMSEs) for Landsat imagery of the order of 0.09 pixels in the new fine resolution image recorded. As such, we show how, by using a Hopfield neural network, more accurate measures of land cover targets can be obtained compared with those determined using the proportion images alone. The Hopfield neural network used in this way represents a simple, robust, and efficient technique, and results suggest that it is a useful tool for identifying land cover targets from remotely sensed imagery at the subpixel scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available