4.4 Article

Resonance Raman Interrogation of the Consequences of Heme Rotational Disorder in Myoglobin and Its Ligated Derivatives

Journal

BIOCHEMISTRY
Volume 47, Issue 48, Pages 12869-12877

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi801779d

Keywords

-

Funding

  1. National Institutes of Health [DK 35153]
  2. Pfletschinger Habermann Fund
  3. Marquette University

Ask authors/readers for more resources

Resonance Raman spectroscopy is employed to characterize heme site structural changes arising from conformational heterogeneity in deoxyMb and ligated derivatives, i.e., the ferrous CO (MbCO) and ferric cyanide (MbCN) complexes. The spectra for the reversed forms of these derivatives have been extracted from the spectra of reconstituted samples. Dramatic changes in the low-frequency spectra are observed, where newly observed RR modes of the reversed forms are assigned using protohemes that are selectively deuterated at the four methyl groups or at the four methine carbons. Interestingly. while substantial changes in the disposition of the peripheral vinyl and propionate groups can be inferred from the dramatic spectral shifts, the bonds to the internal histidyl imidazole ligand and those of the Fe-CO and Fe-CN fragments are not significantly affected by the heme rotation, as judged by lack of significant shifts in the nu(Fe-NHis), nu(Fe-C), and nu(C-O) modes. In fact, the apparent lack of an effect on these key vibrational parameters of the Fe-N-His, Fe-CO, and Fe-CN fragments is entirely consistent with previously reported equilibrium and kinetic studies that document virtually identical functional properties for the native and reversed forms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available