4.4 Article

4-hydroxynonenal self-limits fas-mediated DISC-Independent apoptosis by promoting export of daxx from the nucleus to the cytosol and its binding to fas

Journal

BIOCHEMISTRY
Volume 47, Issue 1, Pages 143-156

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi701559f

Keywords

-

Funding

  1. NCI NIH HHS [CA77495, R01 CA077495] Funding Source: Medline
  2. NEI NIH HHS [R01 EY004396, EY04396, R01 EY004396-23] Funding Source: Medline
  3. NIEHS NIH HHS [R01 ES012171-05, R01 ES012171, ES021171, R01 ES007804, ES07804] Funding Source: Medline

Ask authors/readers for more resources

Previously, we have shown that 4-hydroxynonenal (4-HNE) induces Fas-mediated apoptosis in HLE B-3 cells through a pathway which is independent of FasL, FADD, procaspase 8, and DISC (Li, J., et al. (2006) Biochemistry 45, 12253-12264). The involvement of Daxx has also been suggested in this pathway, but its role is not clear. Here, we report that Daxx plays an important regulatory role during 4-HNE-induced, Fas-mediated apoptosis in Jurkat cells. 4-HNE induces Fas-dependent apoptosis in procaspase 8-deficient Jurkat cells via the activation of ASK], JNK, and caspase 3, and the apoptosis can be inhibited by masking Fas with the antagonistic anti-Fas antibodies. We demonstrate that 4-HNE exposure to Jurkat cells leads to the induction of both Fas and Daxx. 4-HNE binds to both Fas and Daxx and promotes the export of Daxx from the nucleus to the cytosol, where it binds to Fas and inhibits apoptosis. Depletion of Daxx results in an increase in the activation of ASK1, JNK, and caspase 3 along with exacerbation of 4-HNE-induced apoptosis, suggesting that Daxx inhibits apoptosis by binding to Fas. 4-HNE-induced translocation of Daxx is also accompanied by the activation of the transcription factor HSF1. The results of these studies are consistent with a model in which, by interacting with Fas, 4-HNE promotes proapoptotic signaling via ASK1, JNK, and caspase 3. In parallel, 4-HNE induces Daxx and promotes its export from the nucleus to the cytosol, where it interacts with Fas to self-limit the extent of apoptosis by inhibiting the downstream proapoptotic signaling. Cytoplasmic translocation of Daxx also results in up-regulation of HSF1-associated stress-responsive genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available