4.7 Article

Activation of Ca2+-dependent proteolysis in skeletal muscle and heart in cancer cachexia

Journal

BRITISH JOURNAL OF CANCER
Volume 84, Issue 7, Pages 946-950

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1054/bjoc.2001.1696

Keywords

calpain; protein breakdown; muscle wasting

Categories

Ask authors/readers for more resources

Cachexia is a syndrome characterized by profound tissue wasting that frequently complicates malignancies. In a cancer cachexia model we have shown that protein depletion in the skeletal muscle, which is a prominent feature of the syndrome, is mostly due to enhanced proteolysis. There is consensus on the views that the ubiquitin/proteasome pathway plays an important role in such metabolic response and that cytotoxic cytokines such as TNF alpha are involved in its triggering (Costelli and Baccino, 2000), yet the mechanisms by which the relevant extracellular signals are transduced into protein hypercatabolism are largely unknown. Moreover, little information is presently available as to the possible involvement in muscle protein waste of the Ca2+-dependent proteolysis, which may provide a rapidly activated system in response to the extracellular signals. In the present work we have evaluated the status of the Ca2+-dependent proteolytic system in the gastrocnemius muscle of AH-130 tumour-bearing rats by assaying the activity of calpain as well as the levels of calpastatin, the natural calpain inhibitor. and of the 130 kDa Ca2+-ATPase, both of which are known calpain substrates. After tumour transplantation, total calpastatin activity progressively declined, while total calpain activity remained unchanged, resulting In a progressively increasing unbalance in the calpain/calpastatin ratio. A decrease was also observed far the 130 kDa plasma membrane form of Ca2+-ATPase, while there was no change in the level of the 90 kDa sarcoplasmic Ca2+-ATPase, which is resistant to the action of calpain. Decreased levels of both calpastatin and 130 kDa Ca2+-ATPase have been also detected in the heart of the tumour-bearers. These observations strongly suggest that Ca2+-dependent proteolysis was activated in the skeletal muscle and heart of tumour-bearing animals and raise the possibility that such activation may play a role in sparking off the muscle protein hypercatabolic response that characterizes cancer cachexia. (C) 2001 Cancer Research Campaign.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available