4.7 Article

Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy

Journal

BLOOD
Volume 97, Issue 8, Pages 2221-2229

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood.V97.8.2221

Keywords

-

Categories

Ask authors/readers for more resources

Effective gene therapy for diseases of the circulation requires vectors capable of systemic delivery. The molecular weight of poly(L-lysine) (pLL) has a significant effect on the circulation of pLL/DNA complexes in mice, with pLL(211)/DNA complexes displaying up to 20 times greater levels in the blood after 30 minutes compared with pLL(20)/DNA. It is shown that pLL(20)/DNA complexes fix mouse complement C3 in vitro, independent of immunoglobulin binding; are less soluble in the blood in vivo; bind erythrocytes; are rapidly removed by the liver, where they associate predominantly with Kupffer cells; and result in a rapid increase in hepatic leukocytes expressing high levels of complement receptor 3 (CR3). The circulation properties of these complexes are also dependent on the type of DNA used, with circular plasmid DNA complexes exhibiting increased circulation compared with linear DNA. PLL211/DNA complexes bind erythrocytes and associate with Kupffer cells but, in contrast, do not fix mouse complement in vitro and are unaffected by the type of DNA used. In rats, both types of complexes produce hematuria and are rapidly removed from the circulation. Correlation of in vivo and in vitro results suggests that the solubility of complexes in physiological saline and species-matched complement fixation and erythrocyte lysis may correlate with systemic circulation. Analysis using human blood in vitro shows no hemolysis, but both types of complexes fix complement and bind IgG, suggesting that pLL/DNA complexes may be rapidly cleared from the human circulation. (Blood, 2001;97:2221-2229) (C) 2001 by The American Society of Hematology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available