4.8 Article

MOT1-catalyzed TBP-DNA disruption: uncoupling DNA conformational change and role of upstream DNA

Journal

EMBO JOURNAL
Volume 20, Issue 8, Pages 2028-2040

Publisher

WILEY
DOI: 10.1093/emboj/20.8.2028

Keywords

ATPase; MOT1; TBP; transcription

Funding

  1. NIGMS NIH HHS [GM55763, R01 GM055763] Funding Source: Medline

Ask authors/readers for more resources

SNF2/SWI2-related ATPases employ ATP hydrolysis to disrupt protein-DNA interactions, but how ATP hydrolysis is coupled to disruption is not understood. Here we examine the mechanism of action of MOT1, a yeast SNF2/SWI2-related ATPase that uses ATP hydrolysis to remove TATA binding protein (TBP) from DNA, MOT1 function requires a 17 bp DNA 'handle' upstream of the TATA box, which must be double stranded. Remarkably, MOT1-catalyzed disruption of TBP-DNA does not appear to require DNA strand separation, DNA bending or twisting of the DNA helix. Thus, TBP-DNA disruption is accomplished in a reaction apparently not driven by a change in DNA structure. MOT1 action is supported by DNA templates in which the handle is connected to the TATA box via single-stranded DNA, indicating that the upstream duplex DNA can be conformationally uncoupled from the TATA box. Combining these results with proposed similarities between SNF2/SWI2 ATPases and helicases, we suggest that MOT1 uses ATP hydrolysis to translocate along the handle and thereby disrupt interactions between TBP and DNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available